
Preprint
UCRL-JC-140114

U.S. Department of Energy

Laboratory

Vislt: A Component Based
Parallel Visualization
Package

S. Ahern,
Whitlock

Bonnell, E. Brugger,

This article was submitted to

Childs, J. Meredith, B.

Nuclear Explosives Code Developers Conference, Oakland, CA.,
October 23-27, 2000

October 1 2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at e
Available for a processing fee to U.S. Department of Energy

And its contractors in paper from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis.osti.aov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld,eov
Online ordering: htb: / /www.ntis.gov/orderine.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

http://www.llnl.gov

NECDC UNCLASSIFIED October ZOO0

VisIt: A Component Based Parallel Visualization Package (U)

Sean Ahern, Kathleen Bonnell, Eric Brugger,
Hank Childs, Jeremy Meredith, Brad Whitlock

Lawrence Livermore National Laboratory

We are currently developing a component based, parallel visualization and graphical analysis
tool for visualizing and analyzing data on two- and three-dimensional (20, 3 0) meshes. The tool
consists of three primary components: a graphical user interface (GUI), a viewer, and a parallel
compute engine. The components are designed to be operated in a distributed fashion with the
GUI and viewer typically running on a high performance visualization server and the compute
engine running on a large parallel platform. The viewer and compute engine are both based on
the Visualization Toolkit (VTK), an open source object oriented data manipulation and
visualization library. The compute engine will make use of parallel extensions to VTK, based on
MPI, developed by Los Alamos National Laboratory in collaboration with the originators of
P K . The compute engine will make use of meta-data so that it only operates on the portions of
the data necessary to generate the image. The meta-data can either be created as the post-
processing data is generated or as a pre-processing step to using VisIt. VisIt will be integrated
with the VIEWS’ Tera-Scale Browser, which will provide a high performance visual data
browsing capability based on multi-resolution techniques. (U)

Keywords: visualization, distributed computing, components

Introduction
VisIt’s primary design goal is to quickly and efficiently visualize two- and three-dimensional

tera-scale datasets from both structured and unstructured meshes. Visit incorporates several
architectural features to meet these goals including a distributed architecture, a demand driven
execution model, and a parallel compute engine. Secondary design goals include the ability to
easily leverage the work of others and to deliver new functionality quickly. These secondary
goals are being accomplished through the use of a component architecture and by basing all the
visualization and data processing capabilities on the Visualization Toolkit (VTK).

The distributed architecture allows the different tasks required to generate a visualization to
be performed on the hardware platform most appropriate to the task. The YO can be performed
on the machine where the data is located eliminating the need to move the data. The data
processing and generation of the geometric primitives can be performed on a large parallel
compute platform where the greatest compute capabilities are available. Finally, the rendering
can be performed on a visualization server, which contains hardware for transforming geometric
primitives into an image.

A demand driven execution model allows VisIt to read in and process only the data that will
actually contribute to a given image. VisIt will make use of meta-data to eliminate portions of the
dataset that will not be visible in the final image or that will be eliminated as part of the data
processing being performed to generate the image. The datasets must be broken up into domains
with the meta-data defined down to the level of a domain. Portions of the dataset will be
eliminated down to the granularity of a domain.

3

UNCLASSIFIED

I UNCLASSIFIED October 2000 NECDC

Visualization capability developed in VTK can be easily integrated within VisIt by virtue of
the fact that its architecture is based on it. With the exception of user interface development,
adding a VTK module will be a straightforward process that can be automated. Functionality that
does not readily lend itself to incorporation within the VTK based architecture may still be
integrated with VisIt by first making it into a component.

VTK
The Visualization Toolkit is an object oriented visualization system. It contains extensive

image processing and visualization capabilities. Its data model supports images, geometric
primitives, structured and unstructured grids, and scalar, vector and tensor fields defined on
grids. The VTK library consists of hundreds of modules with various visualization capabilities.
The modules are combined into networks, which are then executed to form images. VTK is
written in C++ and runs under Unix, Windows95 and WindowsNT. It also supports interfaces for
Tcl/Tk and Python.

Architecture
VisIt consists of three primary components including a Graphical User Interface (GUI), a

Viewer, and a parallel Compute Engine. Additionally, there is a Meta-data Server, which
provides file system information as well as meta-data about the datasets being visualized. The
components interact with one another through the use of proxy classes. The proxy classes are
responsible for starting the component or connecting to an existing component. The proxy
classes are then used to interact with the components.

t

I

Figure 1, A block diagram of the VisIt components.

The state information for VisIt is shared between the GUI and the Viewer, with the majority
of the state information stored in the Viewer. The state information is kept consistent between the
GUI and Viewer through the use of the Subject Observer design pattern. The Meta-data Server

2

UNCLASSIFIED

NECDC UNCLASSIFIED October 2000

and the Compute Engine are both stateless except for any internal caching they may be doing.
This leads to a highly fault tolerant architecture. If the machine that the Meta-data Server and
Compute Engine was running on were to go down, the Viewer could automatically restart them
later and continue from where the user left off.

The Viewer and Compute Engine create dynamic VTK networks as necessary to generate the
images displayed by the Viewer. The Compute Engine will either send geometry or images to the
Viewer. Currently only geometry is sent between the Compute Engine and Viewer. The decision
as to which will be user controllable and will be based on several constraints including

The geometric data grows with image complexity while the image data is fixed for a given
image size. Since the bandwidth between the Compute Engine and Viewer is fixed and that the
rendering speed of the Compute Engine scales with the number of processors, sending images
will be preferred method for the most complex images. Switching between geometry and images
could at some later date be made automatic.

The Viewer can connect to multiple Compute Engines. Currently it blocks waiting for data to
arrive from the Compute Engine but in the future will be threaded so that it can perform other
operations while it is waiting for data. The Viewer caches the geometric primitives for handling
viewing changes and for displaying time-based animations. In the future, the Viewer will also
cache images for displaying time-based animations.

The Compute Engine can operate in serial of parallel. The parallel version uses the Message
Passing Interface (MPI) for doing its parallel communication. Datasets must be decomposed into
domains for the parallel version to achieve any type of performance gain over the serial version.
The parallel version currently employs a static load-balancing scheme, where domains are
assigned to processors before any work is done. In the future it will be employing a dynamic
load-balancing scheme where the domains are placed in a queue and are assigned to processors
when they become idle. The Compute Engine caches the last ten most recently used networks. It
provides progress information to the Viewer at the granularity of a domain. It is also
interruptible, again at the granularity of a domain.

The component architecture allows other applications to easily be integrated within VisIt.
The VIEWS’ Tera-Scale Browser and the VIEWS’ Scientific Data Management (SDM) feature
extraction tools are both components we are planning on integrating with VisIt. Figure 2
illustrates how the components will work together. The Tera-Scale Browser and VisIt will share
a common GUT, with appropriate extensions added to the existing interface to handle the
additional functionality that the Tera-Scale Browser supplies.

The bandwidth between the Compute Engine and the Viewer
The size of the geometric data
The size of the image data
The rendering speed of the Viewer
The rendering speed of the Compute Engine

3

UNCLASSIFIED

NECDC UNCLASSIFIED October 2000

Figure 2. A block diagram showing the Tera-Scale Browser and SDM feature
extraction tools integrated within VisIt.

Current Status
We have focused on creating the infrastructure for VisIt and have implemented the minimal

amount of visualization capability necessary to develop and test the infrastructure. It currently
supports both two- and three-dimensional structured and unstructured data. As of October 1,
2000, VisIt had the ability to

Create pseudocolor plots
Slice and onion peel datasets
Seamlessly access data on remote machines
Launch remote engines as necessary to create plots
Create geometry on a remote machine and send it to the viewer for display
Display images in multiple windows
Create multiple plots
Apply multiple operators to a dataset
Set plot and operator attributes
Hide and show plots
Animate time dependent data
Post plot and operator attribute windows to a tabbed notepad

VisIt has been ported to SGI and Linux systems.

4

UNCLASSIFIED

NECDC UNCLASSIFIED October 2000

Screen captures from VisIt
Below are a couple of screen captures from VisIt displaying some of the functionality

currently available in VisIt.

Zigure 3. A screen capture of VisIt displaying data from two remote machines. The upper
eft hand window contains an image from a Compute Engine running serially on the same
nachine as the GUT and Viewer. The upper right hand window contains an image from a
Zompute Engine running in parallel on a remote machine. Also shown is the Host profiles
vindow in the lower right hand corner. It is used to set the properties for the Compute
Zngines that are initiated by VisIt, such as the number of processors to use or the user name
bn the remote machine.

5

UNCLASSIFIED

NECDC UNCLASSIFIED October 2000

3gure 4. A screen capture of VisIt displaying data with multiple operators applied to the
latasets. The upper left hand window shows a 3D unstructured mesh with the onion peel
)perator applied. The upper right hand window shows the onion peeled mesh sliced by a
:utting plane.

Future Plans

level of visualization capabilities for a wide spread release in July 2001.

References
Schroeder, W., Martin, K., and Lorensen, B., The Visualization Toolkit, (Prentice Hall PTR, New

We will continue focusing on completing the infrastructure. We will then implement a base

Jersey, 1998).
Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns, (Addison-Wesley,

Massachusetts, 1995).

Acknowledgements
This work was-performed under the auspices of the U. S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

6

UNCLASSIFIED

